• AirCONICS (Python/Rhinoceros) download
  • Aircraft Geometry Toolbox (Matlab)
  • Chapter 2: Geometry parameterization – philosophy and practice
  • Chapter 3: Curves
  • Chapter 4: Surfaces
  • Chapter 5: Aerofoil Engineering – Fundamentals
  • Chapter 6: Families of Legacy Aerofoils
  • Chapter 7: Aerofoil Parameterization
  • Chapter 8: Planform Parameterization
  • Chapter 9: Three-Dimensional Wing Synthesis
  • Chapter_10: Design Sensitivities
  • Chapter_11: Basic Aerofoil Analysis: A Worked Example
  • Chapter_12: Human-Powered Aircraft Wing Design: A Case Study in Aerodynamic Shape Optimization
  • An AirCONICS-based unmanned air vehicle model
  • Terms & Conditions

Aircraft Geometry Codes

~ Parametric Models for Optimization, scripted in Python, Rhino and Matlab

Monthly Archives: March 2019

ADRpy – Aircraft Design Recipes in Python

02 Saturday Mar 2019

Posted by András Sóbester in Uncategorized

≈ 2 Comments

ADRpy_splash

We have released ADRpy, a free library of aircraft design and performance analysis tools suitable for rapid sizing calculations. The models implemented in ADRpy are largely analytical, enabling fast explorations of large design spaces. Most of the methods can already be used in the earliest phases of the design process, even before a geometry model is built. In fact, ADRpy can serve as the basis of sensitivity analyses and uncertainty quantification (UQ) exercises as part of the analysis of the feasibility of the design requirements.

The code can be installed via pip or by cloning its GitHub repository – see full installation instructions on the documentation pages.

In addition to the usage examples contained in the documentation, we maintain a library of Jupyter notebooks illustrating use cases of ADRpy, including an ADRpy-based implementation of the constraint analysis study we presented in Small Unmanned Fixed-wing Aircraft Design: A Practical Approach.

ADRpy is open source software and it can be used under the terms of a GPLv3 copyleft license.

Any questions, get in touch via the comments facility below or by raising an issue on the ADRpy GitHub page.

southwest

Advertisement

Codes, etc.

  • AirCONICS (Python/Rhinoceros) download
  • Aircraft Geometry Toolbox (Matlab)
  • An AirCONICS-based unmanned air vehicle model
  • Chapter 2: Geometry parameterization – philosophy and practice
  • Chapter 3: Curves
  • Chapter 4: Surfaces
  • Chapter 5: Aerofoil Engineering – Fundamentals
  • Chapter 6: Families of Legacy Aerofoils
  • Chapter 7: Aerofoil Parameterization
  • Chapter 8: Planform Parameterization
  • Chapter 9: Three-Dimensional Wing Synthesis
  • Chapter_10: Design Sensitivities
  • Chapter_11: Basic Aerofoil Analysis: A Worked Example
  • Chapter_12: Human-Powered Aircraft Wing Design: A Case Study in Aerodynamic Shape Optimization
  • Errata
  • Terms & Conditions
  • UAV design book

Recent Posts

  • ADRpy – Aircraft Design Recipes in Python
  • Small Unmanned Fixed-Wing Aircraft Design
  • Wing sizing via constraint analysis
  • Standalone AirCONICS for Python
  • Design Optimization tools – some completely biased suggestions

Recent Comments

András Sóbester on Small Unmanned Fixed-Wing Airc…
Richard Adom on Small Unmanned Fixed-Wing Airc…
Isaac Amankwaa on Small Unmanned Fixed-Wing Airc…
András Sóbester on Small Unmanned Fixed-Wing Airc…
Isaac Amankwaa on Small Unmanned Fixed-Wing Airc…

Archives

  • March 2019
  • July 2017
  • October 2016
  • May 2016
  • January 2015
  • December 2014
  • October 2014
  • September 2014

Categories

  • Uncategorized

Meta

  • Register
  • Log in
  • Entries feed
  • Comments feed
  • WordPress.com

Create a free website or blog at WordPress.com.

Privacy & Cookies: This site uses cookies. By continuing to use this website, you agree to their use.
To find out more, including how to control cookies, see here: Cookie Policy
  • Follow Following
    • Aircraft Geometry Codes
    • Already have a WordPress.com account? Log in now.
    • Aircraft Geometry Codes
    • Customize
    • Follow Following
    • Sign up
    • Log in
    • Report this content
    • View site in Reader
    • Manage subscriptions
    • Collapse this bar
 

Loading Comments...